Relative Extrema (Section 4.2)

Warm-up

Given $f(x) = \frac{x}{x^2 + 2}$. Find the intervals on which the function is:

a) increasing

b) decreasing

Relative Maxima and Minima (Relative Extrema)

Figure 4.2.2 © John Wiley & Sons, Inc. All rights reserved.

What do all of the relative maxima and minima have in common?

Critical Points versus Stationary Points

Critical Points:

Stationary Points: _____

Critical points are candidates for where relative extrema *may* occur.

Relative Extrema (Section 4.2)

Finding Relative Extrema: The First Derivative Test

A relative maximum occurs at a critical point if
A relative minimum occurs at a critical point if
Example 1: Find the relative extrema of $f(x) = 3x^5 - 5x^3$ using the first derivative test.
Example 2: Find the relative extrema of $f(x) = 3x^{\frac{5}{3}} - 15x^{\frac{2}{3}}$ using the first derivative test.
Finding Relative Extrema: The Second Derivative Test
A relative maximum occurs at a stationary point if
A relative minimum occurs at a stationary point if
Example 3: Find the relative extrema of $f(x) = x^3 - 3x + 1$ using the second derivative test.

Relative Extrema (Section 4.2)

Class Work

Find the relative extrema of the following functions using both the first and second derivative tests.

1.
$$f(x) = 3x^2 - 6x + 1$$

2.
$$f(x) = x^3 - 3x + 3$$

3.
$$f(x) = x^3 - 3x^2 + 3x - 2$$

4.
$$f(x) = (x-1)^4$$

Locate the critical points and identify which are stationary points.

5.
$$f(x) = 4x^4 - 16x^2 + 17$$

6.
$$f(x) = 3x^4 + 12x$$